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Abstract 
A technique for integral image compression is presented. The proposed technique relies 

on applying principle component analysis, PCA, on the wavelet coefficients of the elemental 

images to improve the quality of the recovered 3D image while achieving high compression 

ratio. The wavelet coefficients of the individual elemental images are stacked and rearranged 

before applying PCA compression. The PCA compression is applied to each sub-band 

individually to enhance the compression ratio. The quality of the reconstructed 3D images 

and received elemental images are calculated. Results show high compression ratio 

compared to PCA alone compression while maintaining the recovered 3D image quality. 

PSNR is used to measure the reconstructed 3D image quality. 
 

Keywords: Integral Imaging, compression, wavelet, PCA 
 

1. Introduction 
 

Integral Imaging,(II), or Integral photography (IP) is proposed by Lippmann at 1908 

[1].The idea of II simply is to collect a set of 2D images for the same object using microlens 

array. It gives images in continuous viewing angles nor different directions. So, it gives a true 

3D image of the object [2]. II doesn’t cause eye fatigue or need special glasses like the 

stereoscopic method. Because incoherent light is used in II, there is no speckle problem as 

holographic imaging. Because of these benefits, II has been studied for 3D TV, video, and 

movies [3]-[5]. 

The main drawback of II method is the narrow viewing angle and depth limitation. Also, 

II suffers from the low resolution of the reconstructed 3D image because the reconstructed 3D 

scene resolution depends on the number of lenses on the used lenslet array. So, increasing the 

number of lenses enhances the resolution of the 3D image. But it makes the transmitted 

elemental image so huge in size. In practical applications, the recorded images need to be 

stored and transmitted, which involve considerable storage capacity and large transmission 

bandwidth, thus promoting the need for high efficiency compression techniques for II images 

[6]. 

In general, the elemental images are very similar and there is a lot of redundancy between 

neighboring elemental images. So, II images exhibit high spatial correlation between adjacent 

elemental images. Thus, several approaches to effectively reduce the transmitted II images 

size by applying the conventional image compression techniques have been reported. MPEG2 

is used to compress II images by rearranging the elemental images as the consecutive frames 

in a moving picture [7]. An improved compression algorithm based on a hybrid technique 

implementing a four-dimensional transform combining the discrete wavelet transform and the 

discrete cosine transform is presented in [8].  Jang et al. employed the Karhunen – Loeve 

transform (KLT) algorithm for compression of elemental array of images [9],[10]. Even 

though, these methods are simple, they  have acceptable results. 
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This paper presents a technique that relies on using DWT and PCA. The elemental 

images are arranged to subsequent frames and the PCA compression is applied to the different 

DWT sub-bands coefficients on an individual basis. The DWT is applied to the different each 

elemental subimages then the PCA compression is applied to the DWT subband coefficients. 

Peak Signal to Noise Ratio, PSNR, is used to evaluate the quality of the reconstructed images. 

The paper is arranged as follows. Section 1 is an introduction. Review of the Integral 

Imaging, discrete wavelet transform and PCA transform are presented in sections 2 ,3 and 4 

respectively. The proposed technique is presented in section5. Experimental results and 

simulations are presented in section 6, and the conclusion is followed in section 7. 
 

2. Integral Imaging 
 

A general integral imaging system consists of two processes, pickup and reconstruction. 

In the pickup process, as shown in Fig. 1, a lenslet array is used to capture the 3D object. 

Each of the lenslets provides different perspective views of the 3D object, which results in a 

collection of de-magnified 2D images, known as an elemental image array. To store the 

elemental image array, a 2D image sensor such as a charge coupled device (CCD) sensor is 

used. In order to reconstruct the 3D image, rays are reversely propagated through the 

elemental image array and a similar lenslet array is used as in the pickup process. There are 

also computerized methods used to reconstruct the image [11],[12],[13]. These methods make 

it possible to improve qualities of the image such as contrast, brightness, and resolution by 

numerical techniques. Also, these methods eliminate the need for special purpose optical 

equipment such as high-quality liquid-crystal display and micro-optics components to display 

the 3-D images. In this paper, the reconstruction method explained in [11] is used. In this 

method an elemental image array of the 3-D object is formed by a microlens array and 

recorded by a CCD camera. Then we reconstruct 3-D images by extracting pixels periodically 

from the elemental image array, using a computer. Images viewed from an arbitrary angle can 

be retrieved by shifting the points to be extracted. By reconstruction of the 3-D image 

numerically with a computer, the quality of the image can be improved, and a wide variety of 

digital image processing techniques can be applied. 

 

 

Fig. 1. Pickup of the Integral Image. 

Basically, the resolution of the reconstructed 3D images is highly dependent on the 

number of picked-up elemental image array as well as the resolution of each elemental image. 

Therefore, resolution of the reconstructed 3D images can be improved as the number of 

elemental image array increases and the resolution of each elemental image is enhanced, but 

it simultaneously causes an increase of image data to be processed, stored and transmitted in 

this integral imaging system.  
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3. Discrete Wavelet Transform 
 

Discrete Wavelet Transform DWT [14] is a multi-resolution de-compositions that can be 

used to analyze signals and images. It describes a signal by the power at each scale and 

position. DWT has been proved to be a very useful tool for image compression in the recent 

years [15]. Wavelet transform exploits both the spatial and frequency correlation of data by 

dilations (or contractions) and translations of mother wavelet on the input data. It supports the 

multiresolution analysis of data i.e. it can be applied to different scales according to the 

details required, which allows progressive transmission and zooming of the image without the 

need of extra storage. Another encouraging feature of wavelet transform is its symmetric 

nature that is both the forward and the inverse transform has the same complexity, building 

fast compression and decompression routines. Its characteristics well suited for image 

compression include the ability to take into account of Human Visual System’s (HVS) 

characteristics, very good energy compaction capabilities, robustness under transmission, 

high compression ratio etc. 

The implementation of wavelet compression scheme is very similar to that of subband 

coding scheme: The first stage of the DWT converts an image into four sub-bands by 

applying low-pass and high-pass filters to the image followed by down-sampling by a factor 

of two.  the resulting coefficients grouped into four zones, where H symbolizes high 

frequency data and L symbolizes low frequency data.  

The advantage of wavelet transform, it is that divides the information of an image into 

decomposing images to approximate subsignals (LL) and detail subsignals (LH, HL, HH) 

parts as shown in Fig.2 . This enables to isolate and manipulate the data with specific 

properties. With this, it is possible to determine whether to preserve more specific details. For 

instance, keeping more vertical detail instead of keeping all the horizontal(LH), vertical 

details (HL) and diagonal (HH) of an image that has more vertical aspects. This would allow 

the image to lose a certain amount of horizontal and diagonal details, but would not affect the 

image in human perception.  

 

 
 

Fig. 2. The Two-level Sub-band Decomposition Used in the DWT. 
 

There are a lot of wavelet filters like, Daubechies wavelets, Coiflets, biorthogonal 

wavelets, and Symlets. These various transforms are different in mathematical properties such 

as symmetry, number of vanishing moments and orthogonality.  

 

4. Principle Component Analysis 
 

PCA (Principle Component Analysis) [16] is widely used in image processing, especially 

in image compression. Also, it is called the Karhunen-Leove transform KLT or the Hotelling 
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transform. Principal components analysis PCA is a statistical procedure that allows finding a 

reduced number of dimensions that account for the maximum possible amount of variance in 

the data matrix. The PCA basis vectors are the eigenvector of the covariance matrix of the 

input data. This is useful for exploratory analysis of multivariate data as the new dimensions 

called principal components PCs. A reduced dimension can be formed by choosing the PCs 

associated with the highest eigenvalues. So, we can consider KLT as a unique transform 

which decorellates its input.  

Calculating a principal components analysis is relatively simple and depends on some 

characteristics associated with matrices eigenvalues and eigenvectors. To calculate the PCA 

we first estimate the correlation matrix or covariance matrix of the image array. The next step 

is to calculate the eigenvalues of the matrix. Each eigenvalue can be interpreted as the 

variance associated with a single vector. The next step is to calculate the eigenvectors 

associated with each eigenvalue. Each eigenvector represents the factor loading associated 

with a specific eigenvalue. By multiplying the eigenvector by the square root of the 

eigenvalue. This is all the information we need to begin to apply PCA. Finally, we need to 

select the number of eigenvectors needed to explain the majority data of the image. We 

simply select the eigenvectors associated with the largest eigenvalues to represent a sufficient 

amount of the image data. 

 

5. The Proposed  DWT-PCA II Compression Algorithm 
 

When wavelet transform is applied to an image, it produces as many coefficients as there 

are pixels in the image (i.e.: there is no compression yet since it is only a transform). These 

coefficients can then be compressed more easily because the information is statistically 

concentrated in just a few coefficients. Due to high correlation between elemental images, the 

sub-bands of the wavelet transform are highly correlated. So, applying PCA to the DWT sub-

bands resulted in a good compression ratio. 

 

5.1. Steps of the algorithm 

 

This paper presents a technique that uses DWT and PCA to compress II images. The 

proposed technique consists of three steps as shown in Fig 3.  The first step is to stack the II 

images into a sequence of frames that are composed of the elemental images. Scanning the 

2D II images with any type has no effect on the resultant compression ratio. A 3D image is 

formed as shown in Fig.4 . In the second step, the II sub-images are decomposed into 

different scales using wavelet transform. The DWT coefficients are rearrange in an array form 

such that each column represents the same scale DWT coefficient of all the II images as 

shown in Fig.5. At the third step, principal component analysis is applied on wavelet sub-

band of all subimages, as shown in Fig.6. Fig. 7 shows a flow chart for the proposed 

algorithm.  

 

 
 

Fig. 3. The DWT Combined PCA Compression Algorithm 
 

 

http://en.wikipedia.org/wiki/Coefficient
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Coefficient


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 4, No. 2, June, 2011 

 

 

69 
 

 

 

 

 
 

 

Fig. 4. Scan of the Integral Image. 
 

 

 

 

 

                                    

 
 

Fig. 5. Wavelet for Each Subimage. 
 

Integral Image 

Subimage 

Scan the II image 
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Fig. 6.  PCA for Each Type of DWT Subfilter. 

 

 

 
 

Fig.7.  Flow Chart of the Proposed Algorithm. 
 

5.2. Mathematical Analysis 

 

Let the input 2D integral image called I where has a size of N× M pixels, the elemental 

image Ei size is d× d then the number of elemental images in one row r is given by r = 
d

N  the 

number of elemental images in a column is given by c = 
d

M

  

the total number of elemental 

images in the Integral image I is k where k = r× c. Scanning the II image I and stacking the 

elemental images gives a volumetric 3D image E having a size d× d× k pixels. Then, DWT is 
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applied to each sub-image Ei. where i =0,1…..k. DWT transformation splits the input image 

into a low pass component L and a high pass component H both of which are decimated 

(down sampled) by 2:1.  Repeat this again to make 2D DWT. It converts an input series E0, 

E1,.. Ek into one high-pass wavelet coefficient series and one low-pass wavelet coefficient 

series (of length I/2 each) given by:  

m

j

m

mii

m

j

m

mii

LCEL

HCEH


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



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







1

0

2

1

0

2

     (1) 

 

Where HCm and LCm are the high coefficients and low coefficients of the used type of 

DWT filter called wavelet filters, j is the length of the filter, and i=0, ..., [d/2]-1. In practice, 

such transformation will be applied recursively on the low-pass series until the desired 

number of iterations is reached.  XLL the coefficient for the low low filter , XLH is the low high 

filter coefficient, XHL is the low high filter coefficient and XHH   is the high filter coefficient. In 

general, most of the energy in the image tends to be concentrated in the low frequency 

regions with the detail subbands contain the edge information.  

Then the covariance matrix of the vector Xs ,where s the sub-band type, generated using 

the DWT coefficients with similar allocation in all arranged sub-image of 3D-matrix, as show 

in Fig. 8 is calculated.  

 
Fig. 8. PCA for all Subimages of Each Type of Sub-bands DWT Filters. 

 

For each Sub-band let Xs = (xs1, xs2, …. ,xsk) 
T
, where s is the sub-band are LL, LH, HL or 

HH, T  indicates the transpose and k is the number of  subimages.  

let mx = E{x} is the mean vector. 
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Where  rr = no. of row of Xs .   note rr= k. 

 cc= no. of column of Xs. cc=
4

2d  

From Eq
n
 (2) 
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Then calculate the eigenvector of the covariance matrix indicated by the symbol v 

The vectors v have the same direction as Cx. Then Cv=v,  is called the eigenvalues of 

C. 

Cv=v (C-I)v=0 

The eigenvectors and eigen values are calculated as follows: 

1. Calculate det(C-I) 

2. Determine roots to det(C-I)=0, roots are eigenvalues . 

3. Solve (C- I) v=0 for each  to obtain eigenvectors v. 

The extracted uncorrelated components are called principal components (PCs) which is 

estimated from the eigenvectors of the covariance matrix. The first few PC’s contain most of 

the variations in the original dataset. For using PCA in image compression we perform the 

following: 

1. Eigenvalues  and eigenvectors v are sorted in descending order 

2. The n component with highest  is principal component is kept  

3. Feature vector = (v1, ... ,vn) where vi is a column oriented eigenvector 

contains chosen components.  

 

5.3. Metric of Measure: 

 

Many metrics could be used to measure the error between the original image and the 

compressed image. One of the important metrics is the peak signal to noise ratio PSNR where 

 




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
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2
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       (5)

 

Where P is the maximum possible pixel value, I is the original image, and O is the 

compressed image and the MSE given by  
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                               (6) 

Where x and y are the spatial coordinates of images having a dimensions of X× Y pixels. 

The PSNR is calculated against the compression ratio where the compression ratio is defined 

as the ratio between the original image size to the transmitted compressed image size. The 

compression ratio, CR, of the proposed technique is calculated using the following formula: 

                      rseigenvecto dtransmitte the of  sizeThe

image the of rseigenvecto the of  sizetotal The
CR 

                                              (7) 

                   The total size of the eigenvectors of the image = N× M                                        (8) 
 

For our proposed algorithm DWT combined PCA : 

            

 
4

2d
ttttrseigenvecto dtransmitte the of  sizeThe HHHLLHLL 

                                  (9) 

Where tLL is the number of eigenvectors transmitted from the LL filter, tLH is the number 

of eigenvectors transmitted from the LH filter, tHL is the number of eigenvectors transmitted 

from the HL filter and tHH is the number of eigenvectors transmitted from the HH filter.  

For compression using PCA algorithm only:  
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2

1 dtrseigenvecto dtransmitte the of  sizeThe 

                                    (10)        

Where t1 is the number of eigenvectors transmitted. 

From  eqn. 8, 9 in 7 the compression ratio CR for DWT combined PCA algorithm:  

                                  
4

2d
tttt

MN
CR

HHHLLHLL 




                                            (11)         

From eqn 8, 10 in 7 the the compression ratio CR for PCA algorithm :     

  
2

1 dt

MN
CR






                                                                (12) 

The number of the used eigenvectors depends on the desired MSE. So, the needed number 

of eignvectors is calculated by solving equation 6 on an iterative basis. Westart from a low 

threshold value and ignoreall the eigenvectors with eigenvalues lower than this threshold; this 

will be repeated for the eigenvectors of all of the four subands. Then, the remaing 

eigrnvectors are used to calculate O(x,y). If the calculated MSE, using equation 6, is lower 

than the desired one the threshold is increased and the process is repeated until we reach the 

desired MSE. 

 

5.4. The Proposed Algorithm can be Summarized as Follows: 

 
As summary, The proposed algorithm divided into two parts encoder and decoder . 

 

5.4.1. Encoder 
1. Divides the 2D II image into sub-images.  Each sub-image consists of one 

elemental image with size d
2
 pixels.  

2. Sort the k elemental images using row scan to form 3D image with size k× n× n 

pixels. 

3. DWT is applied to each sub-image.  

4. PCA transform is applied to each sub-band coefficient of DWT. 

5. Select the eigenvectors associated the largest eigenvalues for each sub-band 

and transmit. 

 
5.4.2. Decoder 

To reconstruct the image back again  

1- Apply inverse PCA to each sub-band individually. 

2- Construct the DWT of the 3D II images 

3- Apply inverse DWT to each elemental image. 

4- Inverse Scan II image to reconstruct the II image. 

5- Evaluate the PSNR. 

6- Reconstruct the 3D image. 

7- Evaluate the PSNR for the reconstructed image. 
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6. Experimental Results 
 

Here, we present the experimental results for II compression using the proposed 

technique.  

The used micro lens array has a total size of 10 cm by 10 cm and each lens has a diameter 

of 1mm and a focal length of 5.2mm. In our experiment, two different 3D objects are used to 

evaluate the proposed algorithm performance. The first object is a 10mm× 10mm× 10mm die 

which is placed at a distance of 80 mm from the microlens array. While the second object is a 

home toy with an average size of 15cm × 15 cm × 10cm. 

For the die object, A total of 54× 54 elemental images are used in the experiments, the 

total image size is 1836× 1836 pixels in which each elemental image consisted of 34× 34 

pixels. This image data is stored in a TIFF (tagged image file format). In the home image, A 

total of 68× 92 elemental images are used in the experiments, the total image size is 

1836× 2484 pixels in which each elemental image consisted of  27× 27 pixels.Fig.9 and Fig.10 

show the used 3D objects and the corresponding elemental images arrays for the used die and 

home toy respectively. 

In our experiment five types of wavelet are used. These are the Haar wavelet, Daubechies 

8, Coiflets 1, Symlets 2, and the Biorthogonal 3.3. In the following experiments the 

Daubechies 8 wavelet is used unless other thing is stated. 

 
Fig.9 (a) an Image for the Used Die (b) The Die Elemental Images Array. 

 

 
Fig.10 (a) an Image for the Used Home Toy. (b) The Corresponding Elemental 

Images Array. 
 

In the first experiment the performance of the proposed PCA combined DWT 

compression algorithm is compared to the regular PCA compression where the PSNR is 

calculated for the elemental images array rather than the 3D object that is because the 

elemental II images are the transmitted ones. The eigenvectors corresponding to the highest 

eigenvalues are chosen to be transmitted. The number of chosen eigenvectors depends on the 

desired compression ratio. The number of transmitted eigenvectors is changed and both the 

PSNR and the compression ratio are computed and plotted. Fig. 11 shows the comparison 

between the two algorithms for the elemental images array of die object shown in Figs. 9-b.  

In the next experiment the performance of the proposed algorithm for the 3D 

reconstructed object is compared to the elemental images array. Fig. 11, 12 compares 
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reconstructed 3D image of the toy home image and the die image consequently with PCA 

alone and the proposed algorithm at compression ratio of 150 for the home image and 

compression ratio of 70 for die image which shows that the DWT combined PCA algorithm 

give better result.  

As Fig. 13 shows, the proposed compression algorithm is superior compared to the 

regular PCA by around 8 dB for a compression ratio of 50. The PSNR of the proposed 

algorithm is better by 2 dB at a high compression ratio of 500 compared to regular PCA 

compression. The next experiment computes the PSNR at different compression ratios for the 

proposed compression algorithm and the regular PCA compression for the elemental image 

array of the home toy object shown in Fig. 10-b. as Fig. 14 shows the PSNR is better by 11 

dB compared to the regular PCA at low compression ratio of 50 and around 2 dB at high 

compression ratio of 500. Also, Fig. 14 shows that the result for the proposed algorithm gives 

better PSNR than the PCA algorithm in the home toy object . This relatively better results 

compared to the die object. 

 
Fig. 11 a) The reconstructed toy home image. b) The decompressed 

reconstructed toy home image using PCA at compression ratio150. c) The 
decompressed reconstructed toy home image using DWT combined PCA at 

compression ratio150. 
 

 
Fig. 12 a) The reconstructed Die image. b) The decompressed reconstructed 

die image using PCA at compression ratio 70. c) The decompressed 
reconstructed die image using DWT combined PCA at compression ratio70. 

 
Fig. 13 PSNR versus compression ratio for the elemental images array of the 
die object for the proposed compression algorithm compared to regular PCA 

compression. 
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Fig. 14 PSNR versus compression ratio for the elemental images array of the 

home toy object for the proposed compression algorithm compared to regular 
PCA compression. 

 

As figure 13 shows, at PSNR=40 the corresponding CR=228 for PCA algorithm and 

CR=58 for the proposed algorithm combined DWT with PCA. 

As figure 14 shows, at PSNR=40 the corresponding CR=99 for PCA algorithm and 

CR=b32 for the proposed algorithm combined DWT with PCA. 

Fig. 15 shows the PSNR of the reconstructed image compared to the elemental images 

array for different compression ratios for the die object shown in Fig. 9. As the figure  shows 

the reconstructed image has a better PSNR that is because the field integration process at the 

reconstruction phase that could average the error. Fig. 16 shows the PSNR of the 

reconstructed image compared to the elemental images array for different compression ratios 

for the home toy object shown in Fig. 10.  
 

 
Fig. 15 PSNR versus compression ratio for the elemental images array 

compared to the reconstructed 3D object for the die object for the proposed 
compression algorithm. 

 

 
Fig. 16 PSNR versus compression ratio for the elemental images array 

compared to the reconstructed 3D object for the home toy object for the 
proposed compression algorithm. 
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In the last experiment different wavelets are used. Fig. 17 shows the PSNR versus the 

compression ratio for the die object  and Fig. 18  shows the PSNR versus the compression 

ratio for the home toy object. As the figures show the PSNR changes according to the wavelet 

types. We can conclude that the Haar wavelet gives the worst results. Also, Daubechies 
wavelet db8 has a slightly better compression ratio compared to the wavelet families.  

 

 
Fig. 17 PSNR versus compression ratio for the elemental images array for the 

die object for different wavelets 
 

 
Fig. 18 PSNR versus compression ratio for the elemental images array for the 

home toy object for different wavelets 
 

7. Conclusion 
 

A new compression scheme has been developed for 3-D images captured using II 

technique. The proposed compression scheme combines discrete wavelet transform DWT and 

principle component analysis PCA. The DWT is calculated for each elemental image and the 

elemental images are stacked. PCA is applied to each of the sub-bands individually. The 

image quality obtained with the presented technique is compared with that of PCA based 

compression scheme at the same compression ratio. Two different 3D objects are used. The 

PSNR is calculated for both elemental images array and the reconstructed 3D object. The 

results show that the proposed algorithm gives better performance compared with the other 

type of compression. The performance enhancement is better at low compression ratio 

compared to higher compression ratio. As the results show, the PSNR of the reconstructed 

object using the proposed algorithm is better than the elemental image array PSNR for the 

same compression ratio. Different wavelet types are used, Daubechies wavelet db8 gives 

better result compared to the other wavelet families. 
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